Search results
Results From The WOW.Com Content Network
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [ 4 ] [ 5 ]
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems, g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [2]
The g-force or gravitational force equivalent is a mass-specific force (force per unit mass), expressed in units of standard gravity (symbol g or g 0, not to be confused with "g", the symbol for grams).
The use of g units refers to the fact that an observer on board an aircraft will experience an apparent acceleration of gravity (i.e. relative to their frame of reference) equal to load factor times the acceleration of gravity. For example, an observer on board an aircraft performing a turn with a load factor of 2 (i.e. a 2 g turn) will see ...
TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rockets, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel ...
The equivalence for the pound was given as 1 lb = 453.592 65 g or 0.45359 kg, which made the kilogram equivalent to about 2.204 6213 lb. In 1883, it was determined jointly by the standards department of the British Board of Trade and the Bureau International that 0.453 592 4277 kg was a better approximation, and this figure, rounded to 0.453 ...