When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Infinitesimal - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal

    In common speech, an infinitesimal object is an object that is smaller than any feasible measurement, but not zero in size—or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective in mathematics, infinitesimal means infinitely small, smaller than any standard real number. Infinitesimals ...

  3. Hyperreal number - Wikipedia

    en.wikipedia.org/wiki/Hyperreal_number

    Each real set, function, and relation has its natural hyperreal extension, satisfying the same first-order properties. The kinds of logical sentences that obey this restriction on quantification are referred to as statements in first-order logic. The transfer principle, however, does not mean that R and *R have identical behavior.

  4. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.

  5. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    The infinitesimal increments are called differentials. Related to this is the integral in which the infinitesimal increments are summed (e.g. to compute lengths, areas and volumes as sums of tiny pieces), for which Leibniz also supplied a closely related notation involving the same differentials, a notation whose efficiency proved decisive in ...

  6. Infinitesimal strain theory - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_strain_theory

    For infinitesimal deformations of a continuum body, in which the displacement gradient tensor (2nd order tensor) is small compared to unity, i.e. ‖ ‖, it is possible to perform a geometric linearization of any one of the finite strain tensors used in finite strain theory, e.g. the Lagrangian finite strain tensor, and the Eulerian finite strain tensor.

  7. Standard part function - Wikipedia

    en.wikipedia.org/wiki/Standard_part_function

    The "infinitesimal microscope" is used to view an infinitesimal neighborhood of a standard real. Nonstandard analysis deals primarily with the pair R ⊆ ∗ R {\displaystyle \mathbb {R} \subseteq {}^{*}\mathbb {R} } , where the hyperreals ∗ R {\displaystyle {}^{*}\mathbb {R} } are an ordered field extension of the reals R {\displaystyle ...

  8. Crystalline cohomology - Wikipedia

    en.wikipedia.org/wiki/Crystalline_cohomology

    over X, called the infinitesimal site, and then show it is the same as the de Rham cohomology of any lift. The site Inf(X) is a category whose objects can be thought of as some sort of generalization of the conventional open sets of X. In characteristic 0 its objects are infinitesimal thickenings U→T of Zariski open subsets U of X.

  9. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    A hyperreal r is infinitesimal if and only if it is infinitely close to 0. For example, if n is a hyperinteger, i.e. an element of *N − N, then 1/n is an infinitesimal. A hyperreal r is limited (or finite) if and only if its absolute value is dominated by (less than) a standard integer.