Search results
Results From The WOW.Com Content Network
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 ... Water: 100.00 0.512 0.00 –1.86 K b & K f [2] Ethyl ...
For pure elements or compounds, e.g. pure copper, pure water, etc. the liquidus and solidus are at the same temperature, and the term melting point may be used. There are also some mixtures which melt at a particular temperature, known as congruent melting. One example is eutectic mixture. In a eutectic system, there is particular mixing ratio ...
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.
The pressure melting point of ice is the temperature at which ice melts at a given pressure. The pressure melting point is nearly a constant 0 °C at pressures above the triple point at 611.7 Pa, where water can exist in only the solid or liquid phases, through atmospheric pressure (100 kPa) until about 10 MPa. With increasing pressure above 10 ...
Triple points mark conditions at which three different phases can coexist. For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
However, under carefully created conditions, supercooling, or superheating past the melting or freezing point can occur. Water on a very clean glass surface will often supercool several degrees below the freezing point without freezing. Fine emulsions of pure water have been cooled to −38 °C without nucleation to form ice.