When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them. Examples are the decimal.Decimal or num7.Num type of Python, and analogous types provided by other languages.

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The format he proposed shows the need for a fixed-sized significand as is presently used for floating-point data, fixing the location of the decimal point in the significand so that each representation was unique, and how to format such numbers by specifying a syntax to be used that could be entered through a typewriter, as was the case of his ...

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    The design of floating-point format allows various optimisations, resulting from the easy generation of a base-2 logarithm approximation from an integer view of the raw bit pattern. Integer arithmetic and bit-shifting can yield an approximation to reciprocal square root (fast inverse square root), commonly required in computer graphics.

  5. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    [nb 2] For instance rounding 9.46 to one decimal gives 9.5, and then 10 when rounding to integer using rounding half to even, but would give 9 when rounded to integer directly. Borman and Chatfield [ 15 ] discuss the implications of double rounding when comparing data rounded to one decimal place to specification limits expressed using integers.

  6. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The width of the exponent field for a k-bit format is computed as w = round(4 log 2 (k)) − 13. The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively).

  7. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 format, being a shortened IEEE 754 single-precision 32-bit float, allows for fast conversion to and from an IEEE 754 single-precision 32-bit float; in conversion to the bfloat16 format, the exponent bits are preserved while the significand field can be reduced by truncation (thus corresponding to round toward 0) or other rounding ...

  8. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python provides a round function for rounding a float to the nearest integer. For tie-breaking, Python 3 uses round to even: round(1.5) and round(2.5) both produce 2. [124] Versions before 3 used round-away-from-zero: round(0.5) is 1.0, round(-0.5) is −1.0. [125] Python allows Boolean expressions with multiple equality relations in a manner ...

  9. Unit in the last place - Wikipedia

    en.wikipedia.org/wiki/Unit_in_the_last_place

    Here we start with 0 in single precision (binary32) and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 2 24 +1, and this value rounds to 2 24 in round to nearest, ties to even.