Ad
related to: hyperbola conic section equation solver given area and radius
Search results
Results From The WOW.Com Content Network
If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola. Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are ...
The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.
The vertices of a central conic can be determined by calculating the intersections of the conic and its axes — in other words, by solving the system consisting of the quadratic conic equation and the linear equation for alternately one or the other of the axes. Two or no vertices are obtained for each axis, since, in the case of the hyperbola ...
The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...
A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex. Each cone has an axis, and the plane section is parallel to the plane formed by the axes. Using analytic geometry, the hyperbolas satisfy the symmetric equations
A,C: vertices of the ellipse and foci of the hyperbola E,F: foci of the ellipse and vertices of the hyperbola Focal conics: two parabolas A: vertex of the red parabola and focus of the blue parabola F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either
The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.
A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.