When.com Web Search

  1. Ad

    related to: what does a sphere represent in physics problems and solutions answers

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  3. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The sphere has the smallest total mean curvature among all convex solids with a given surface area. The mean curvature is the average of the two principal curvatures, which is constant because the two principal curvatures are constant at all points of the sphere. The sphere has constant mean curvature.

  4. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.

  5. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...

  6. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    The solution function Y(θ, φ) is regular at the poles of the sphere, where θ = 0, π. Imposing this regularity in the solution Θ of the second equation at the boundary points of the domain is a Sturm–Liouville problem that forces the parameter λ to be of the form λ = ℓ ( ℓ + 1) for some non-negative integer with ℓ ≥ | m | ; this ...

  7. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Many problems in the chemical and physical sciences can be related to packing problems where more than one size of sphere is available. Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing.

  8. Spherically symmetric spacetime - Wikipedia

    en.wikipedia.org/wiki/Spherically_symmetric...

    Spherical symmetry is a characteristic feature of many solutions of Einstein's field equations of general relativity, especially the Schwarzschild solution and the Reissner–Nordström solution. A spherically symmetric spacetime can be characterised in another way, namely, by using the notion of Killing vector fields , which, in a very precise ...

  9. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Poincaré showed that the three-body problem is not integrable. In other words, the general solution of the three-body problem can not be expressed in terms of algebraic and transcendental functions through unambiguous coordinates and velocities of the bodies. His work in this area was the first major achievement in celestial mechanics since ...