When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat of combustion - Wikipedia

    en.wikipedia.org/wiki/Heat_of_combustion

    For a fuel of composition C c H h O o N n, the (higher) heat of combustion is 419 kJ/mol × (c + 0.3 h − 0.5 o) usually to a good approximation (±3%), [2] [3] though it gives poor results for some compounds such as (gaseous) formaldehyde and carbon monoxide, and can be significantly off if o + n > c, such as for glycerine dinitrate, C 3 H 6 ...

  3. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    If a comet with this speed fell to the Earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s. Since the equator is moving at about 0.5 km/s, the impact speed has an upper limit of 73.4 km/s, giving an upper limit for the specific energy of a comet hitting the Earth of about 2690 MJ/kg.

  4. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    2 (736 J⋅K −1 ⋅kg −1) is greater than that of an hypothetical monatomic gas with the same molecular mass 28 (445 J⋅K −1 ⋅kg −1), by a factor of ⁠ 5 / 3 ⁠. The vibrational and electronic degrees of freedom do not contribute significantly to the heat capacity in this case, due to the relatively large energy level gaps for both ...

  5. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  6. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3, temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa), we have that R air = P 0 /(ρ 0 T 0) = 287.052 874 247 J·kg −1 ·K −1. Then the molar mass of air is computed by M 0 = R/R air = 28.964 917 g/mol. [11]

  7. Joule per mole - Wikipedia

    en.wikipedia.org/wiki/Joule_per_mole

    It is also an SI derived unit of molar thermodynamic energy defined as the energy equal to one joule in one mole of substance. [1] [2] For example, the Gibbs free energy of a compound in the area of thermochemistry is often quantified in units of kilojoules per mole (symbol: kJ·mol −1 or kJ/mol), with 1 kilojoule = 1000 joules. [3]

  8. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    Δ r G, Gibbs free energy change per mole of reaction, Δ r G°, Gibbs free energy change per mole of reaction for unmixed reactants and products at standard conditions (i.e. 298 K, 100 kPa, 1 M of each reactant and product), R, gas constant, T, absolute temperature, ln, natural logarithm, Q r, reaction quotient (unitless),

  9. Template:Convert/list of units/energy - Wikipedia

    en.wikipedia.org/wiki/Template:Convert/list_of...

    Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)