When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    We say that functions and are orthogonal if their inner product (equivalently, the value of this integral) is zero: f , g w = 0. {\displaystyle \langle f,g\rangle _{w}=0.} Orthogonality of two functions with respect to one inner product does not imply orthogonality with respect to another inner product.

  3. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain , the bilinear form may be the integral of the product of functions over the interval:

  4. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  5. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials , consisting of the Hermite polynomials , the Laguerre polynomials and ...

  6. Endomorphism - Wikipedia

    en.wikipedia.org/wiki/Endomorphism

    Orthogonal projection onto a line, m, is a linear operator on the plane. This is an example of an endomorphism that is not an automorphism. In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism.

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...

  8. Mathematical and theoretical biology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_and...

    Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of ...

  9. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces.