Search results
Results From The WOW.Com Content Network
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions sin nx and sin mx are orthogonal on the interval x ∈ ( − π , π ) {\displaystyle x\in (-\pi ,\pi )} when m ≠ n {\displaystyle m\neq n} and n and m are positive integers.
Example of orthogonal factorial design Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out. Contrasts can be represented by vectors and sets of orthogonal contrasts are uncorrelated and independently distributed if the data are normal.
An Introduction to Orthogonal Polynomials. Gordon and Breach, New York. ISBN 0-677-04150-0. Chihara, Theodore Seio (2001). "45 years of orthogonal polynomials: a view from the wings". Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999).
As suggested in the introduction, this perspective is presumably the origin of the term “spherical harmonic” (i.e., the restriction to the sphere of a harmonic function). For example, for any the formula (,,) = (+) defines a homogeneous polynomial of degree with domain and codomain , which happens to be independent of . This polynomial is ...
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces.
For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.