Ad
related to: examples of data compression in data mining techniques gfg practice exercises
Search results
Results From The WOW.Com Content Network
Usually, video compression additionally employs lossy compression techniques like quantization that reduce aspects of the source data that are (more or less) irrelevant to the human visual perception by exploiting perceptual features of human vision. For example, small differences in color are more difficult to perceive than are changes in ...
Both the encoder and decoder begin with a trivial model, yielding poor compression of initial data, but as they learn more about the data, performance improves. Most popular types of compression used in practice now use adaptive coders. Lossless compression methods may be categorized according to the type of data they are designed to compress.
Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction. PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also be used to cluster data into predicted groupings in cluster analysis.
In the field of data compression, Shannon coding, named after its creator, Claude Shannon, is a lossless data compression technique for constructing a prefix code based on a set of symbols and their probabilities (estimated or measured).
Golomb coding is a lossless data compression method using a family of data compression codes invented by Solomon W. Golomb in the 1960s. Alphabets following a geometric distribution will have a Golomb code as an optimal prefix code, [1] making Golomb coding highly suitable for situations in which the occurrence of small values in the input stream is significantly more likely than large values.
Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances.
The Weissman score is a performance metric for lossless compression applications. It was developed by Tsachy Weissman, a professor at Stanford University, and Vinith Misra, a graduate student, at the request of producers for HBO's television series Silicon Valley, a television show about a fictional tech start-up working on a data compression algorithm.
Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...