When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Sought: an element x 0 ∈ A such that f(x 0) ≤ f(x) for all x ∈ A ("minimization") or such that f(x 0) ≥ f(x) for all x ∈ A ("maximization"). Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming , but still in use for example in linear ...

  3. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.

  4. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    f : ℝ n → ℝ is the objective function to be minimized over the n-variable vector x, g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem.

  5. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    Another condition in which the min-max and max-min are equal is when the Lagrangian has a saddle point: (x∗, λ∗) is a saddle point of the Lagrange function L if and only if x∗ is an optimal solution to the primal, λ∗ is an optimal solution to the dual, and the optimal values in the indicated problems are equal to each other. [18 ...

  6. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    For less-than or equal constraints, introduce slack variables s i so that all constraints are equalities. Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0.

  7. Utilitarian rule - Wikipedia

    en.wikipedia.org/wiki/Utilitarian_rule

    The utilitarian rule then allocates the wood in a way that maximizes the number of buildings. Consider a problem of allocating a rare medication among patients. The utility functions may represent their chance of recovery – u i ( y i ) {\displaystyle u_{i}(y_{i})} is the probability of agent i {\displaystyle i} to recover by getting y i ...

  8. Scientists Reveal the Right Number of Steps to Walk to Stay ...

    www.aol.com/scientists-reveal-number-steps-walk...

    But most importantly, the study found that essentially the more you walk, the better – every extra 1,000 steps was associated with a 15% decreased risk of dying from any cause, and a mere extra ...

  9. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.