When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Otherwise, the Bareiss algorithm may be viewed as a variant of Gaussian elimination and needs roughly the same number of arithmetic operations. It follows that, for an n × n matrix of maximum (absolute) value 2 L for each entry, the Bareiss algorithm runs in O( n 3 ) elementary operations with an O( n n /2 2 nL ) bound on the absolute value of ...

  3. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right multiplication (post-multiplication) represents elementary column operations. Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form .

  4. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    When performing any of these multiplication algorithms the following "steps" should be applied. The answer must be found one digit at a time starting at the least significant digit and moving left. The last calculation is on the leading zero of the multiplicand. Each digit has a neighbor, i.e., the digit on its right. The rightmost digit's ...

  5. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.

  6. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  8. Duplication and elimination matrices - Wikipedia

    en.wikipedia.org/wiki/Duplication_and...

    In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.

  9. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    In the case of a negative 11, multiplier, or both apply the sign to the final product as per normal multiplication of the two numbers. A step-by-step example of 759 × 11: The ones digit of the multiplier, 9, is copied to the temporary result. result: 9; Add 5 + 9 = 14 so 4 is placed on the left side of the result and carry the 1. result: 49