Search results
Results From The WOW.Com Content Network
The phase shift in Europe is 120°, as is the case with three-phase current. That is why we calculate 130 V × √ 3 = 225 V. A three-phase final step-down transformer is then used. One house gets phases A and B, the next house gets phase B and C, the third house gets phase A and C.
An important property of three-phase power is that the instantaneous power available to a resistive load, = =, is constant at all times.Indeed, let = = To simplify the mathematics, we define a nondimensionalized power for intermediate calculations, =
The base value should only be a magnitude, while the per-unit value is a phasor. The phase angles of complex power, voltage, current, impedance, etc., are not affected by the conversion to per unit values. The purpose of using a per-unit system is to simplify conversion between different transformers.
Nameplate capacity, also known as the rated capacity, nominal capacity, installed capacity, maximum effect or gross capacity, [1] is the intended full-load sustained output of a facility such as a power station, [2] [3] electric generator, a chemical plant, [4] fuel plant, mine, [5] metal refinery, [6] and many others.
The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy , such as wind, the sun or ...
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. . Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)