Search results
Results From The WOW.Com Content Network
An autorelative pointer is a pointer whose value is interpreted as an offset from the address of the pointer itself; thus, if a data structure has an autorelative pointer member that points to some portion of the data structure itself, then the data structure may be relocated in memory without having to update the value of the auto relative ...
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
Pages in category "Pointers (computer programming)" The following 10 pages are in this category, out of 10 total. This list may not reflect recent changes. D.
Stop-and-copy garbage collection in a Lisp architecture: [1] Memory is divided into working and free memory; new objects are allocated in the former. When it is full (depicted), garbage collection is performed: All data structures still in use are located by pointer tracing and copied into consecutive locations in free memory.
Java precludes pointers and pointer-arithmetic within the Java runtime environment. The Java language designers reasoned that pointers are one of the main features that enable programmers to put bugs in their code and chose not to support them. [ 9 ]
In computer science, reference counting is a programming technique of storing the number of references, pointers, or handles to a resource, such as an object, a block of memory, disk space, and others. In garbage collection algorithms, reference counts may be used to deallocate objects that are no longer needed.
Smart pointers can facilitate intentional programming by expressing, in the type, how the memory of the referent of the pointer will be managed. For example, if a C++ function returns a pointer, there is no way to know whether the caller should delete the memory of the referent when the caller is finished with the information.
Aliasing can occur in any language that can refer to one location in memory with more than one name (for example, with pointers).This is a common problem with functions that accept pointer arguments, and their tolerance (or the lack thereof) for aliasing must be carefully documented, particularly for functions that perform complex manipulations on memory areas passed to them.