When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v is an n by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it.

  4. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    This implies that all eigenvalues of a Hermitian matrix A with dimension n are real, and that A has n linearly independent eigenvectors. Moreover, a Hermitian matrix has orthogonal eigenvectors for distinct eigenvalues. Even if there are degenerate eigenvalues, it is always possible to find an orthogonal basis of C n consisting of n ...

  5. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Since the underlying vector space can be shown [14] to be the direct sum of invariant subspaces associated with the eigenvalues, A can be assumed to have just one eigenvalue λ. The 1 × 1 case is trivial. Let A be an n × n matrix. The range of A − λI, denoted by Ran(A − λI), is an invariant subspace of A.

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  7. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Here exp(A) denotes the matrix exponential of A, because every eigenvalue λ of A corresponds to the eigenvalue exp(λ) of exp(A). In particular, given any logarithm of A, that is, any matrix L satisfying ⁡ = the determinant of A is given by = ⁡ (⁡ ()).

  8. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    On the other hand, if does not have linearly independent eigenvectors associated with it, then is not diagonalizable. [ 26 ] [ 27 ] Definition: A vector x m {\displaystyle \mathbf {x} _{m}} is a generalized eigenvector of rank m of the matrix A {\displaystyle A} and corresponding to the eigenvalue λ {\displaystyle \lambda } if

  9. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    An n×n matrix with n distinct nonzero eigenvalues has 2 n square roots. Such a matrix, A, has an eigendecomposition VDV −1 where V is the matrix whose columns are eigenvectors of A and D is the diagonal matrix whose diagonal elements are the corresponding n eigenvalues λ i.