Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
The Dirichlet distribution, a generalization of the beta distribution. The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution.
Galton box A Galton box demonstrated. The Galton board, also known as the Galton box or quincunx or bean machine (or incorrectly Dalton board), is a device invented by Francis Galton [1] to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution.
Bayes studied how to compute a distribution for the probability parameter of a binomial distribution (in modern terminology). After Bayes's death, his family gave his papers to a friend, the minister, philosopher, and mathematician Richard Price.
The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.
The probability measure thus defined is known as the Binomial distribution. As we can see from the above formula that, if n=1, the Binomial distribution will turn into a Bernoulli distribution. So we can know that the Bernoulli distribution is exactly a special case of Binomial distribution when n equals to 1.
A binomial test is a statistical hypothesis test used to determine whether the proportion of successes in a sample differs from an expected proportion in a binomial distribution. It is useful for situations when there are two possible outcomes (e.g., success/failure, yes/no, heads/tails), i.e., where repeated experiments produce binary data .
A Poisson binomial distribution can be approximated by a binomial distribution where , the mean of the , is the success probability of . The variances of P B {\displaystyle PB} and B {\displaystyle B} are related by the formula