When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.

  4. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .

  5. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    Bit indexing correlates to the positional notation of the value in base 2. For this reason, bit index is not affected by how the value is stored on the device, such as the value's byte order . Rather, it is a property of the numeric value in binary itself.

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    If a instead is one, the variable base (containing the value b 2 i mod m of the original base) is simply multiplied in. In this example, the base b is raised to the exponent e = 13. The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1.

  7. Non-integer base of numeration - Wikipedia

    en.wikipedia.org/wiki/Non-integer_base_of_numeration

    Base √ 2 behaves in a very similar way to base 2 as all one has to do to convert a number from binary into base √ 2 is put a zero digit in between every binary digit; for example, 1911 10 = 11101110111 2 becomes 101010001010100010101 √ 2 and 5118 10 = 1001111111110 2 becomes 1000001010101010101010100 √ 2.

  8. Module:BaseConvert - Wikipedia

    en.wikipedia.org/wiki/Module:BaseConvert

    It may be a number instead, if the input base is 10. base - (required) the base to which the number should be converted. May be between 2 and 36, inclusive. from - the base of the input. Defaults to 10 (or 16 if the input has a leading '0x'). Note that bases other than 10 are not supported if the input has a fractional part.

  9. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    This scheme can also be referred to as Simple Binary-Coded Decimal (SBCD) or BCD 8421, and is the most common encoding. [12] Others include the so-called "4221" and "7421" encoding – named after the weighting used for the bits – and "Excess-3". [13]