Search results
Results From The WOW.Com Content Network
The conjugate of a product of two quaternions is the product of the conjugates in the reverse order. That is, if p and q are quaternions, then (pq) ∗ = q ∗ p ∗, not p ∗ q ∗. The conjugation of a quaternion, in stark contrast to the complex setting, can be expressed with multiplication and addition of quaternions:
The product of a quaternion with its conjugate is its common norm. [63] The operation of taking the common norm of a quaternion is represented with the letter N. By definition the common norm is the product of a quaternion with its conjugate. It can be proven [64] [65] that common norm is equal to the square of the tensor of a quaternion ...
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.
Let Γ be a finite subgroup of SO(3), the three-dimensional rotation group.There is a natural homomorphism f of SU(2) onto SO(3) which has kernel {±I}. [4] This double cover can be realised using the adjoint action of SU(2) on the Lie algebra of traceless 2-by-2 skew-adjoint matrices or using the action by conjugation of unit quaternions.
A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:
Quaternion variable theory differs in some respects from complex variable theory. For example: The complex conjugate mapping of the complex plane is a central tool but requires the introduction of a non-arithmetic, non-analytic operation. Indeed, conjugation changes the orientation of plane figures, something that arithmetic functions do not ...
Algebraically, this is an instance of the conjugate Sylow theorem (for n odd): for n odd, each reflection, together with the identity, form a subgroup of order 2, which is a Sylow 2-subgroup (2 = 2 1 is the maximum power of 2 dividing 2n = 2[2k + 1]), while for n even, these order 2 subgroups are not Sylow subgroups because 4 (a higher power of ...