Search results
Results From The WOW.Com Content Network
The Hurwitz quaternions form an order (in the sense of ring theory) in the division ring of quaternions with rational components. It is in fact a maximal order ; this accounts for its importance. The Lipschitz quaternions, which are the more obvious candidate for the idea of an integral quaternion , also form an order.
Let A be the set of quaternions of the form a + b i + c j + d k where a, b, c, and d are either all integers or all half-integers. The set A is a ring (in fact a domain) and a lattice and is called the ring of Hurwitz quaternions.
The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry , namely the Hurwitz surfaces . [ 1 ]
Thus, the quaternion components ,,, are either all integers or all half-integers, depending on whether is even or odd, respectively. The set of Hurwitz quaternions forms a ring; that is to say, the sum or product of any two Hurwitz quaternions is likewise a Hurwitz quaternion.
Hurwitz and Frobenius proved theorems that put limits on hypercomplexity: Hurwitz's theorem says finite-dimensional real composition algebras are the reals , the complexes , the quaternions , and the octonions , and the Frobenius theorem says the only real associative division algebras are , , and .
Adolf Hurwitz (German: [ˈaːdɔlf ˈhʊʁvɪts]; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory. Early life [ edit ]
The ring of Hurwitz quaternions, also known as integral quaternions. A quaternion a = a 0 + a 1 i + a 2 j + a 3 k is integral if either all the coefficients a i are integers or all of them are half-integers. All free associative algebras. [1]
The (2,3,7) triangle group admits a presentation in terms of the group of quaternions of norm 1 in a suitable order in a quaternion algebra. More specifically, the triangle group is the quotient of the group of quaternions by its center ±1. Let η = 2cos(2π/7). Then from the identity