When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...

  3. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances.

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The mean curvature is an extrinsic invariant. In intrinsic geometry, a cylinder is developable, meaning that every piece of it is intrinsically indistinguishable from a piece of a plane since its Gauss curvature vanishes identically. Its mean curvature is not zero, though; hence extrinsically it is different from a plane.

  5. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  6. Homotopy principle - Wikipedia

    en.wikipedia.org/wiki/Homotopy_principle

    This immersion cannot be because a small oscillating sphere would provide a large lower bound for the principal curvatures, and therefore for the Gauss curvature of the immersed sphere, but on the other hand if the immersion is this has to be equal to 1 everywhere, the Gauss curvature of the standard , by Gauss' Theorema Egregium.

  7. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.

  8. Pseudosphere - Wikipedia

    en.wikipedia.org/wiki/Pseudosphere

    In particular, for the tractroid the Gauss–Codazzi equations are the sine-Gordon equation applied to the static soliton solution, so the Gauss–Codazzi equations are satisfied. In these coordinates the first and second fundamental forms are written in a way that makes clear the Gaussian curvature is −1 for any solution of the sine-Gordon ...

  9. Minkowski problem - Wikipedia

    en.wikipedia.org/wiki/Minkowski_problem

    In full generality, the Minkowski problem asks for necessary and sufficient conditions on a non-negative Borel measure on the unit sphere S n-1 to be the surface area measure of a convex body in . Here the surface area measure S K of a convex body K is the pushforward of the (n-1) -dimensional Hausdorff measure restricted to the boundary of K ...