When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The field of complex numbers is also isomorphic to three subsets of quaternions.) [22] A quaternion that equals its vector part is called a vector quaternion. The set of quaternions is a 4-dimensional vector space over the real numbers, with { 1 , i , j , k } {\displaystyle \left\{1,\mathbf {i} ,\mathbf {j} ,\mathbf {k} \right\}} as a basis ...

  3. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the ...

  4. History of quaternions - Wikipedia

    en.wikipedia.org/wiki/History_of_quaternions

    In mathematics, quaternions are a non-commutative number system that extends the complex numbers.Quaternions and their applications to rotations were first described in print by Olinde Rodrigues in all but name in 1840, [1] but independently discovered by Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    using the Hamilton product, where the vector part of the pure quaternion L(p ′) = (0, r x, r y, r z) is the new position vector of the point after the rotation. In a programmatic implementation, the conjugation is achieved by constructing a pure quaternion whose vector part is p , and then performing the quaternion conjugation.

  6. William Rowan Hamilton - Wikipedia

    en.wikipedia.org/wiki/William_Rowan_Hamilton

    Hamilton also described a quaternion as an ordered four-element multiple of real numbers, and described the first element as the "scalar" part, and the remaining three as the "vector" part. He coined the neologisms "tensor" and "scalar", and was the first to use the word "vector" in the modern sense.

  7. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.

  8. Cayley–Hamilton theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Hamilton_theorem

    When the ring is a field, the Cayley–Hamilton theorem is equivalent to the statement that the minimal polynomial of a square matrix divides its characteristic polynomial. A special case of the theorem was first proved by Hamilton in 1853 [6] in terms of inverses of linear functions of quaternions.

  9. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Hamilton's equations have another advantage over Lagrange's equations: if a system has a symmetry, so that some coordinate does not occur in the Hamiltonian (i.e. a cyclic coordinate), the corresponding momentum coordinate is conserved along each trajectory, and that coordinate can be reduced to a constant in the other equations of the set.