When.com Web Search

  1. Ad

    related to: characteristic function gaussian

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    In mathematics, a Gaussian function, often simply referred to as a Gaussian, ... The graph of a Gaussian is a characteristic symmetric "bell curve" shape.

  5. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Copula, for the definition of the Gaussian or normal copula model. Multivariate t-distribution, which is another widely used spherically symmetric multivariate distribution. Multivariate stable distribution extension of the multivariate normal distribution, when the index (exponent in the characteristic function) is between zero and two.

  6. Complex normal distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_normal_distribution

    The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /. [3]: p. 494 [4]: pp. 501 Formally,

  7. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    A Gaussian process can be used as a prior probability distribution over functions in Bayesian inference. [7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For ...

  8. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This is the characteristic function of the normal distribution with expected value + and variance + Finally, recall that no two distinct distributions can both have the same characteristic function, so the distribution of X + Y must be just this normal distribution.

  9. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    For a degenerate point mass at c, the cumulant generating function is the straight line () =, and more generally, + = + if and only if X and Y are independent and their cumulant generating functions exist; (subindependence and the existence of second moments sufficing to imply independence.