When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.

  3. File:Jablonski Diagram of Fluorescence Only-en.svg - Wikipedia

    en.wikipedia.org/wiki/File:Jablonski_Diagram_of...

    English: Jablonski diagram of absorbance, non-radiative decay, and fluorescence. Electronic transitions are about 1 eV. Vibrational transitions are about 0.1 eV. Rotational transitions (not shown) are about 0.001 eV. Absorption is about 1 femtosecond, relaxation takes about 1 picosecond, fluorescence takes about 1 nanosecond.

  4. Triplet-triplet annihilation - Wikipedia

    en.wikipedia.org/wiki/Triplet-Triplet_Annihilation

    A Jablonski diagram describing the mechanism of triplet-triplet annihilation. The energy of the first triplet excited state (T 1) is transferred to a second triplet excited state (T 1), resulting in (1) the first T 1 returning to the singlet ground state S0 and (2) the second T 1 promoting to the singlet excited state (S 1).

  5. Förster resonance energy transfer - Wikipedia

    en.wikipedia.org/wiki/Förster_resonance_energy...

    Jablonski diagram of FRET with typical timescales indicated. The black dashed line indicates a virtual photon.. Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). [1]

  6. Internal conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Internal_conversion...

    Jablonski diagram indicating intersystem crossing (left) and internal conversion (right). Internal conversion is a transition from a higher to a lower electronic state in a molecule or atom. [1] It is sometimes called "radiationless de-excitation", because no photons are emitted.

  7. Photoredox catalysis - Wikipedia

    en.wikipedia.org/wiki/Photoredox_catalysis

    Jablonski diagram illustrating the electronic states accessible during photoexcitation. Note: ISC stands for Intersystem Crossing. E 0,0 is a measurement of the energy gap between the ground state and the lowest energy triplet state. This parameter is proportional to the phosphorescence wavelength and is used to compute the redox potentials of ...

  8. Aleksander Jabłoński - Wikipedia

    en.wikipedia.org/wiki/Aleksander_Jabłoński

    Fluorescence is illustrated schematically with the classical Jablonski diagram, first proposed by Jabłoński in 1933 [2] to describe absorption and emission of light. In 1946, he settled in Toruń where he was appointed Head of the Faculty of Physics at the Nicolaus Copernicus University.

  9. Phosphorescence - Wikipedia

    en.wikipedia.org/wiki/Phosphorescence

    Jablonski diagram of an energy scheme used to explain the difference between fluorescence and phosphorescence. The excitation of molecule A to its singlet excited state ( 1 A*) may, after a short time between absorption and emission (fluorescence lifetime), return immediately to ground state , giving off a photon via fluorescence (decay time).