When.com Web Search

  1. Ad

    related to: subgroups in group theory

Search results

  1. Results From The WOW.Com Content Network
  2. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗.

  3. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    In the quaternion group of order 8, each of the cyclic subgroups of order 4 is normal, but none of these are characteristic. However, the subgroup, {1, −1}, is characteristic, since it is the only subgroup of order 2. If n > 2 is even, the dihedral group of order 2n has 3 subgroups of index 2, all of which are normal. One of these is the ...

  4. Index of a subgroup - Wikipedia

    en.wikipedia.org/wiki/Index_of_a_subgroup

    Normal subgroups of prime power index are kernels of surjective maps to p-groups and have interesting structure, as described at Focal subgroup theorem: Subgroups and elaborated at focal subgroup theorem. There are three important normal subgroups of prime power index, each being the smallest normal subgroup in a certain class:

  5. Normal subgroup - Wikipedia

    en.wikipedia.org/wiki/Normal_subgroup

    Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of G {\displaystyle G} are precisely the kernels of group homomorphisms with domain G {\displaystyle G} , which means that they can be used to internally classify those homomorphisms.

  6. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.

  7. Centralizer and normalizer - Wikipedia

    en.wikipedia.org/wiki/Centralizer_and_normalizer

    The centralizer and normalizer of S are both subgroups of G. Clearly, C G (S) ⊆ N G (S). In fact, C G (S) is always a normal subgroup of N G (S), being the kernel of the homomorphism N G (S) → Bij(S) and the group N G (S)/C G (S) acts by conjugation as a group of bijections on S.

  8. Subgroup series - Wikipedia

    en.wikipedia.org/wiki/Subgroup_series

    In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups: = = where is the trivial subgroup.Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups.

  9. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    Both subgroups and normal subgroups of a given group form a complete lattice under inclusion of subsets; this property and some related results are described by the lattice theorem. Kernel of a group homomorphism. It is the preimage of the identity in the codomain of a group homomorphism. Every normal subgroup is the kernel of a group ...