Search results
Results From The WOW.Com Content Network
is the magnitude of the applied magnetic field (A/m), is absolute temperature , is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Spontaneous magnetization is the appearance of an ordered spin state (magnetization) at zero applied magnetic field in a ferromagnetic or ferrimagnetic material below a critical point called the Curie temperature or T C.
Both Curie's law and the Curie–Weiss law fail as the temperature approaches 0 K. This is because they depend on the magnetic susceptibility, which only applies when the state is disordered. [34] Gadolinium sulfate continues to satisfy Curie's law at 1 K. Between 0 and 1 K the law fails to hold and a sudden change in the intrinsic structure ...
Magnetobiology is the study of biological effects of mainly weak static and low-frequency magnetic fields, which do not cause heating of tissues. Magnetobiological effects have unique features that obviously distinguish them from thermal effects; often they are observed for alternating magnetic fields just in separate frequency and amplitude intervals.
While some substances obey the Curie law, others obey the Curie-Weiss law. = T c is the Curie temperature. The Curie-Weiss law will apply only when the temperature is well above the Curie temperature. At temperatures below the Curie temperature the substance may become ferromagnetic. More complicated behaviour is observed with the heavier ...
In contrast, organisms' use of magnetism in navigation is magnetoception and the study of the magnetic fields' effects on organisms is magnetobiology. (The word biomagnetism has also been used loosely to include magnetobiology, further encompassing almost any combination of the words magnetism, cosmology, and biology, such as ...
The material constant in Curie's law is known as the Curie constant. He also discovered that ferromagnetic substances exhibited a critical temperature transition, above which the substances lost their ferromagnetic behavior. This is now known as the Curie temperature. The Curie temperature is used to study plate tectonics, treat hypothermia ...
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .