Search results
Results From The WOW.Com Content Network
In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games.A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed). [1]
Kuhn poker is a simplified form of poker developed by Harold W. Kuhn as a simple model zero-sum two-player imperfect-information game, amenable to a complete game-theoretic analysis. In Kuhn poker, the deck includes only three playing cards, for example, a King, Queen, and Jack. One card is dealt to each player, which may place bets similarly ...
John Forbes Nash Jr. (June 13, 1928 – May 23, 2015), known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations.
The solutions are normally based on the concept of Nash equilibrium, and these solutions are reached by using methods listed in Solution concept. Most solutions used in non-cooperative game are refinements developed from Nash equilibrium, including the minimax mixed-strategy proved by John von Neumann. [8] [13] [20]
Number of pure strategy Nash equilibria: A Nash equilibrium is a set of strategies which represents mutual best responses to the other strategies. In other words, if every player is playing their part of a Nash equilibrium, no player has an incentive to unilaterally change their strategy.
Matching pennies is used primarily to illustrate the concept of mixed strategies and a mixed strategy Nash equilibrium. [1] This game has no pure strategy Nash equilibrium since there is no pure strategy (heads or tails) that is a best response to a best response. In other words, there is no pair of pure strategies such that neither player ...
Created Date: 8/30/2012 4:52:52 PM
In games with static, complete information, the approach to solve is to use Nash equilibrium to find viable strategies. In dynamic games with complete information, backward induction is the solution concept, which eliminates non-credible threats as potential strategies for players.