When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function between topological spaces is called monotone if every fiber is a connected subspace of its domain. A function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } is monotone in this topological sense if and only if it is non-increasing or non-decreasing , which is the usual meaning of " monotone function " in real analysis .

  3. Fibred category - Wikipedia

    en.wikipedia.org/wiki/Fibred_category

    The choice of a (normalised) cleavage for a fibred -category specifies, for each morphism : in , a functor:; on objects is simply the inverse image by the corresponding transport morphism, and on morphisms it is defined in a natural manner by the defining universal property of cartesian morphisms.

  4. Bundle map - Wikipedia

    en.wikipedia.org/wiki/Bundle_map

    In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber ...

  5. Gysin homomorphism - Wikipedia

    en.wikipedia.org/wiki/Gysin_homomorphism

    In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa.

  6. Fiber product of schemes - Wikipedia

    en.wikipedia.org/wiki/Fiber_product_of_schemes

    Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.

  7. Projective bundle - Wikipedia

    en.wikipedia.org/wiki/Projective_bundle

    In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme X over a Noetherian scheme S is a P n -bundle if it is locally a projective n -space; i.e., X × S U ≃ P U n {\displaystyle X\times _{S}U\simeq \mathbb {P} _{U}^{n}} and transition automorphisms are linear.

  8. Morphism - Wikipedia

    en.wikipedia.org/wiki/Morphism

    For every object X, there exists a morphism id X : X → X called the identity morphism on X, such that for every morphism f : A → B we have id B ∘ f = f = f ∘ id A. Associativity h ∘ (g ∘ f) = (h ∘ g) ∘ f whenever all the compositions are defined, i.e. when the target of f is the source of g, and the target of g is the source of h.

  9. Canonical bundle - Wikipedia

    en.wikipedia.org/wiki/Canonical_bundle

    A genus fibration: of is a proper flat morphism to a smooth curve such that and all fibers of have arithmetic genus. If X {\displaystyle X} is a smooth projective surface and the fibers of f {\displaystyle f} do not contain rational curves of self-intersection − 1 {\displaystyle -1} , then the fibration is called minimal .