When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Beta particle - Wikipedia

    en.wikipedia.org/wiki/Beta_particle

    A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively. [2]

  3. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    The beta spectrum, or distribution of energy values for the beta particles, is continuous. The total energy of the decay process is divided between the electron, the antineutrino, and the recoiling nuclide. In the figure to the right, an example of an electron with 0.40 MeV energy from the beta decay of 210 Bi is shown.

  4. Common beta emitters - Wikipedia

    en.wikipedia.org/wiki/Common_beta_emitters

    Tritium is a low-energy beta emitter commonly used as a radiotracer in research and in traser [check spelling] self-powered lightings.The half-life of tritium is 12.3 years. The electrons from beta emission from tritium are so low in energy (average decay energy 5.7 keV) that a Geiger counter cannot be used to detect the

  5. Betavoltaic device - Wikipedia

    en.wikipedia.org/wiki/Betavoltaic_device

    where and are semiconductor band gap and electron-hole pair creation energy respectively. The energy to generate a single EHP by a beta-particle is known to scale linearly with the bandgap as = + with A and B depending on the semiconductor characteristics. [22]

  6. Krypton-85 - Wikipedia

    en.wikipedia.org/wiki/Krypton-85

    Krypton-85 (85 Kr) is a radioisotope of krypton.. Krypton-85 has a half-life of 10.756 years and a maximum decay energy of 687 keV. [1] It decays into stable rubidium-85.Its most common decay (99.57%) is by beta particle emission with a maximum energy of 687 keV and an average energy of 251 keV.

  7. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    However the total energy of the particle E and its relativistic momentum p are frame-dependent; relative motion between two frames causes the observers in those frames to measure different values of the particle's energy and momentum; one frame measures E and p, while the other frame measures E ′ and p ′, where E ′ ≠ E and p ′ ≠ p ...

  8. Stopping power (particle radiation) - Wikipedia

    en.wikipedia.org/wiki/Stopping_power_(particle...

    In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. [1] [2] Stopping power is also interpreted as the rate at which a material absorbs the kinetic energy of a charged particle.

  9. Decay scheme - Wikipedia

    en.wikipedia.org/wiki/Decay_scheme

    The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.