Search results
Results From The WOW.Com Content Network
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations .
Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that: α is a bijection.
Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines , circles or other points.
The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.
Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices , tensors , multivectors , systems of linear equations , higher-dimensional spaces , determinants , inner and outer products, and dual spaces .
A mathematical markup language is a computer notation for representing mathematical formulae, based on mathematical notation.Specialized markup languages are necessary because computers normally deal with linear text and more limited character sets (although increasing support for Unicode is obsoleting very simple uses).
the kernel is the space of solutions to the homogeneous equation T(v) = 0, and its dimension is the number of degrees of freedom in solutions to T(v) = w, if they exist; the cokernel is the space of constraints on w that must be satisfied if the equation is to have a solution, and its dimension is the number of independent constraints that must ...
Mathematical visualization is used throughout mathematics, particularly in the fields of geometry and analysis. Notable examples include plane curves , space curves , polyhedra , ordinary differential equations , partial differential equations (particularly numerical solutions, as in fluid dynamics or minimal surfaces such as soap films ...