Search results
Results From The WOW.Com Content Network
Primary amines can be protected as benzophenone imines, and the protected amines are stable in flash chromatography. [7] Buchwald-Hartwig amination involves coupling aromatic halide and amine to form carbon-nitrogen bonds with the help of palladium-based catalysts. Benzophenone imine can be used as an ammonia-equivalent in such reactions. [1]
Several strategies have been developed to overcome this based on reagents that serve as ammonia equivalents. The use of a benzophenone imine or silylamide can overcome this limitation, with subsequent hydrolysis furnishing the primary aniline. [37] [38] [39]
The general structure of an imine. ... Rarer than primary amines is the use of ammonia to give a primary imine. ... as illustrated with benzophenone imine: [28] (C 6 ...
First, the nickel metal dehydrogenates the alcohol to form a ketone and Ni-H complex. Then, the ketone reacts with ammonia to form an imine. Finally, the imine reacts with Ni-H to regenerate catalyst and form primary amine. An example of a homogeneous catalytic system is the reductive amination of ketones done with an iridium catalyst. [20]
Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich. [2] [3] Scheme 1 – Ammonia or an amine reacts with formaldehyde and an alpha acidic proton of a carbonyl compound to a beta amino carbonyl compound.
The reaction between a ketone and ammonia results in an imine and byproduct water. This reaction is water sensitive and thus drying agents such as aluminum chloride or a Dean–Stark apparatus must be employed to remove water. The resulting imine will react and decompose back into the ketone and the ammonia when in the presence of water.
They told WOWT that chemical dust was left throughout the home, as well as a strong smell of ammonia and shards of meth. "They used our bedroom as the drying room, same with my daughter’s room ...
The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. [1] [2] The rearrangement has also been successfully performed on haloimines and nitrones.