Ads
related to: friedmann equations of cosmology and astronomy 5th edition test
Search results
Results From The WOW.Com Content Network
The term Friedmann equation sometimes is used only for the first equation. [3] In these equations, R(t) is the cosmological scale factor , G N {\displaystyle G_{N}} is the Newtonian constant of gravitation , Λ is the cosmological constant with dimension length −2 , ρ is the energy density and p is the isotropic pressure.
The Friedmann–Lemaître–Robertson–Walker metric (FLRW; / ˈ f r iː d m ə n l ə ˈ m ɛ t r ə ... /) is a metric that describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe that is path-connected, but not necessarily simply connected.
The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...
This combination greatly simplifies the equations of general relativity into a form called the Friedmann equations. These equations specify the evolution of the scale factor the universe in terms of the pressure and density of a perfect fluid. The evolving density is composed of different kinds of energy and matter, each with its own role in ...
The equation of state may be used in Friedmann–Lemaître–Robertson–Walker (FLRW) equations to describe the evolution of an isotropic universe filled with a perfect fluid. If a {\displaystyle a} is the scale factor then ρ ∝ a − 3 ( 1 + w ) . {\displaystyle \rho \propto a^{-3(1+w)}.}
Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, [1] this is a key parameter of the Friedmann equations. In the early stages of the Big Bang , most of the energy was in the form of radiation, and that radiation was the dominant influence on the expansion of the universe.
The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: q = d e f − a ¨ a a ˙ 2 {\displaystyle q\ {\stackrel {\mathrm {def} }{=}}\ -{\frac {{\ddot {a}}a}{{\dot {a}}^{2}}}} where a {\displaystyle a} is ...
In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course ...