When.com Web Search

  1. Ad

    related to: graph based algorithms in machine learning

Search results

  1. Results From The WOW.Com Content Network
  2. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Moreover, numerous graph-related applications are found to be closely related to the heterophily problem, e.g. graph fraud/anomaly detection, graph adversarial attacks and robustness, privacy, federated learning and point cloud segmentation, graph clustering, recommender systems, generative models, link prediction, graph classification and ...

  3. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The machine learning task for knowledge graph embedding that is more often used to evaluate the embedding accuracy of the models is the link prediction. [1] [3] [5] [6] [7] [18] Rossi et al. [5] produced an extensive benchmark of the models, but also other surveys produces similar results.

  4. Graph kernel - Wikipedia

    en.wikipedia.org/wiki/Graph_kernel

    Another examples is the Weisfeiler-Leman graph kernel [9] which computes multiple rounds of the Weisfeiler-Leman algorithm and then computes the similarity of two graphs as the inner product of the histogram vectors of both graphs. In those histogram vectors the kernel collects the number of times a color occurs in the graph in every iteration.

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Second, it is conceptually close to nearest neighbor classification, and as such is popular in machine learning. Third, it can be seen as a variation of model-based clustering, and Lloyd's algorithm as a variation of the Expectation-maximization algorithm for this model discussed below. k-means clustering examples

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  7. Belief propagation - Wikipedia

    en.wikipedia.org/wiki/Belief_propagation

    Belief propagation algorithms are normally presented as message update equations on a factor graph, involving messages between variable nodes and their neighboring factor nodes and vice versa. Considering messages between regions in a graph is one way of generalizing the belief propagation algorithm. [ 10 ]

  8. Ant colony optimization algorithms - Wikipedia

    en.wikipedia.org/wiki/Ant_colony_optimization...

    For some versions of the algorithm, it is possible to prove that it is convergent (i.e., it is able to find the global optimum in finite time). The first evidence of convergence for an ant colony algorithm was made in 2000, the graph-based ant system algorithm, and later on for the ACS and MMAS algorithms.

  9. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.).