Search results
Results From The WOW.Com Content Network
The subgame perfect equilibrium in addition to the Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game. This eliminates all non-credible threats , that is, strategies that contain non-rational moves in order to make the counter-player change their strategy.
In 1978, Nash was awarded the John von Neumann Theory Prize for his discovery of non-cooperative equilibria, now called Nash Equilibria. He won the Leroy P. Steele Prize in 1999. In 1994, he received the Nobel Memorial Prize in Economic Sciences (along with John Harsanyi and Reinhard Selten ) for his game theory work as a Princeton graduate ...
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
The function: () = [/, /], shown on the figure at the right, satisfies all Kakutani's conditions, and indeed it has many fixed points: any point on the 45° line (dotted line in red) which intersects the graph of the function (shaded in grey) is a fixed point, so in fact there is an infinity of fixed points in this particular case.
While this approach can be of greater use in identifying strictly dominated strategies and Nash equilibria, some information is lost as compared to extensive-form representations. The normal-form representation of a game includes all perceptible and conceivable strategies , and their corresponding payoffs, for each player.
The Lemke–Howson algorithm is an algorithm that computes a Nash equilibrium of a bimatrix game, named after its inventors, Carlton E. Lemke and J. T. Howson. [1] It is said to be "the best known among the combinatorial algorithms for finding a Nash equilibrium", [2] although more recently the Porter-Nudelman-Shoham algorithm [3] has outperformed on a number of benchmarks.
Further, it is possible for a game to have a Nash equilibrium that is resilient against coalitions less than a specified size k. CPNE is related to the theory of the core. Confusingly, the concept of a strong Nash equilibrium is unrelated to that of a weak Nash equilibrium. That is, a Nash equilibrium can be both strong and weak, either, or ...
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...