When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric power distribution - Wikipedia

    en.wikipedia.org/wiki/Electric_power_distribution

    Rural electrification systems tend to use higher distribution voltages because of the longer distances covered by distribution lines (see Rural Electrification Administration). 7.2, 12.47, 25, and 34.5 kV distribution is common in the United States; 11 kV and 33 kV are common in the UK, Australia and New Zealand; 11 kV and 22 kV are common in ...

  3. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    Applying the transmission line model based on the telegrapher's equations as derived below, [1] [2] the general expression for the characteristic impedance of a transmission line is: = + + where R {\displaystyle R} is the resistance per unit length, considering the two conductors to be in series ,

  4. Zigzag transformer - Wikipedia

    en.wikipedia.org/wiki/Zigzag_transformer

    For example, an electrical network may have a transmission network of 110 kV/33 kV star/star transformers, with 33 kV/11 kV delta/star for the high voltage distribution network. If a transformation is required directly between the 110 kV/11 kV network an option is to use a 110 kV/11 kV star/delta transformer.

  5. Electric power transmission - Wikipedia

    en.wikipedia.org/wiki/Electric_power_transmission

    For example, a 100 miles (160 km) span at 765 kV carrying 1000 MW of power can have losses of 0.5% to 1.1%. A 345 kV line carrying the same load across the same distance has losses of 4.2%. [25] For a given amount of power, a higher voltage reduces the current and thus the resistive losses.

  6. Transmission line - Wikipedia

    en.wikipedia.org/wiki/Transmission_line

    They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations. Schematic representation of the elementary component of a transmission line. The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port ...

  7. Per-unit system - Wikipedia

    en.wikipedia.org/wiki/Per-unit_system

    As an example of how per-unit is used, consider a three-phase power transmission system that deals with powers of the order of 500 MW and uses a nominal voltage of 138 kV for transmission. We arbitrarily select S b a s e = 500 M V A {\displaystyle S_{\mathrm {base} }=500\,\mathrm {MVA} } , and use the nominal voltage 138 kV as the base voltage ...

  8. Distribution transformer - Wikipedia

    en.wikipedia.org/wiki/Distribution_transformer

    For example, in the United States, the most common voltage is 12.47 kV, with a line-to-ground voltage of 7.2 kV. [7] It has a 7.2 kV phase-to-neutral voltage, exactly 30 times the 240 V on the split-phase secondary side.

  9. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    The telegrapher's equations then describe the relationship between the voltage V and the current I along the transmission line, each of which is a function of position x and time t: = (,) = (,) The equations themselves consist of a pair of coupled, first-order, partial differential equations. The first equation shows that the induced voltage is ...