When.com Web Search

  1. Ad

    related to: what are the laws of electrostatics class

Search results

  1. Results From The WOW.Com Content Network
  2. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical times , it has been known that some materials, such as amber , attract lightweight particles after rubbing .

  3. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]

  4. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  5. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    The law of conservation of charge always applies, giving the object from which a negative charge is taken a positive charge of the same magnitude, and vice versa. Even when an object's net charge is zero, the charge can be distributed non-uniformly in the object (e.g., due to an external electromagnetic field , or bound polar molecules).

  6. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to

  7. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar quantity denoted by V or occasionally φ, [1] equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured ...

  8. Earnshaw's theorem - Wikipedia

    en.wikipedia.org/wiki/Earnshaw's_theorem

    Informally, the case of a point charge in an arbitrary static electric field is a simple consequence of Gauss's law.For a particle to be in a stable equilibrium, small perturbations ("pushes") on the particle in any direction should not break the equilibrium; the particle should "fall back" to its previous position.

  9. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    In electrostatics, where charges are not moving, around a distribution of point charges, the forces determined from Coulomb's law may be summed.