Search results
Results From The WOW.Com Content Network
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
The four expansion regimes of a de Laval nozzle: • under-expanded • perfectly expanded • over-expanded • grossly over-expanded. The most commonly used nozzle is the de Laval nozzle, a fixed geometry nozzle with a high expansion-ratio. The large bell- or cone-shaped nozzle extension beyond the throat gives the rocket engine its ...
The expanding nozzle is a type of rocket nozzle that, unlike traditional designs, maintains its efficiency at a wide range of altitudes. It is a member of the class of altitude compensating nozzles, a class that also includes the plug nozzle and aerospike. While the expanding nozzle is the least technically advanced and simplest to understand ...
A nozzle extension is an extension of the nozzle of a reaction/rocket engine. The application of nozzle extensions improves the efficiency of rocket engines in vacuum by increasing the nozzle expansion ratio.
While research into this nozzle continues, it could be used before all its advantages are developed. As an upper stage, where it would be used in a low ambient pressure/vacuum environment specifically in closed wake mode, an E-D nozzle would offer weight reductions, length reductions and a potential increase to the specific impulse over bell nozzles (depending on engine cycle) allowing ...
A stepped nozzle (or dual-bell nozzle [1]) is a de Laval rocket nozzle which has altitude compensating properties.. The characteristic of this kind of nozzle is that part of the way along the inside of the nozzle there is a straightening of the curve of the nozzle contour, followed by a sharp step outwards.
Overexpansion occurs when the exit area is too big relative to the size of the afterburner, or primary, nozzle. [19] This occurred under certain conditions on the J85 installation in the T-38. The secondary or final nozzle was a fixed geometry sized for the maximum afterburner case. At non-afterburner thrust settings the exit area was too big ...
Contour animation of the mole fraction variation (from 0.025 to 0.05) of a Natural Gas jet as it impinges a steel tank done through CFD.. A high pressure jet is a stream of pressurized fluid that is released from an environment at a significantly higher pressure than ambient pressure from a nozzle or orifice, due to operational or accidental release. [1]