Search results
Results From The WOW.Com Content Network
Anti-gravity (also known as non-gravitational field) is the phenomenon of creating a place or object that is free from the force of gravity. It does not refer to either the lack of weight under gravity experienced in free fall or orbit , or to balancing the force of gravity with some other force, such as electromagnetism or aerodynamic lift .
The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2 ) by definition. [ 4 ] This quantity is denoted variously as g n , g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2 )), [ 5 ] g 0 , or simply g ...
Gravitational field strength within the Earth Gravity field near the surface of the Earth – an object is shown accelerating toward the surface If the bodies in question have spatial extent (as opposed to being point masses), then the gravitational force between them is calculated by summing the contributions of the notional point masses that ...
Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.
Conversely, as two massive objects move towards each other, the motion accelerates under gravity causing an increase in the (positive) kinetic energy of the system and, in order to conserve the total sum of energy, the increase of the same amount in the gravitational potential energy of the object is treated as negative. [1]
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
The gravitational constant G is a key quantity in Newton's law of universal gravitation.. The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity.
Although the electromagnetic force is far stronger than gravity, it tends to cancel itself out within large objects, so over large (astronomical) distances gravity tends to be the dominant force, and is responsible for holding together the large scale structures in the universe, such as planets, stars, and galaxies.