Search results
Results From The WOW.Com Content Network
A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.
The heap data structure, specifically the binary heap, was introduced by J. W. J. Williams in 1964, as a data structure for the heapsort sorting algorithm. [3] Heaps are also crucial in several efficient graph algorithms such as Dijkstra's algorithm. When a heap is a complete binary tree, it has the smallest possible height—a heap with N ...
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
A typical Floyd's build-heap algorithm [6] goes as follows: function FLOYD-BUILD-HEAP(h): for each index i from ⌊ / ⌋ down to 1 do: push-down(h, i) return h In this function, h is the initial array, whose elements may not be ordered according to the min-max heap property.
To search for a given key value, apply a standard binary search algorithm in a binary search tree, ignoring the priorities. To insert a new key x into the treap, generate a random priority y for x. Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
For sparse graphs, that is, graphs with far fewer than | | edges, Dijkstra's algorithm can be implemented more efficiently by storing the graph in the form of adjacency lists and using a self-balancing binary search tree, binary heap, pairing heap, Fibonacci heap or a priority heap as a priority queue to implement extracting minimum efficiently.
A medial- or length-oriented tree is similar to an augmented tree, but symmetrical, with the binary search tree ordered by the medial points of the intervals. There is a maximum-oriented binary heap in every node, ordered by the length of the interval (or half of the length). Also we store the minimum and maximum possible value of the subtree ...