When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  4. Parity learning - Wikipedia

    en.wikipedia.org/wiki/Parity_learning

    Parity learning is a problem in machine learning. An algorithm that solves this problem must find a function ƒ, given some samples (x, ƒ(x)) and the assurance that ƒ computes the parity of bits at some fixed locations. The samples are generated using some distribution over the input.

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    In mathematics, statistics, finance, [1] and computer science, particularly in machine learning and inverse problems, regularization is a process that converts the answer of a problem to a simpler one. It is often used in solving ill-posed problems or to prevent overfitting. [2]

  6. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  7. Curse of dimensionality - Wikipedia

    en.wikipedia.org/wiki/Curse_of_dimensionality

    In machine learning problems that involve learning a "state-of-nature" from a finite number of data samples in a high-dimensional feature space with each feature having a range of possible values, typically an enormous amount of training data is required to ensure that there are several samples with each combination of values. In an abstract ...

  8. Dilution (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Dilution_(neural_networks)

    The network is pruned, and then kept if it is an improvement over the previous model. Dilution and dropout both refer to an iterative process. The pruning of weights typically does not imply that the network continues learning, while in dilution/dropout, the network continues to learn after the technique is applied.

  9. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]