Search results
Results From The WOW.Com Content Network
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
scikit-image Hough-transform for line, circle and ellipse, implemented in Python. Hough transform based on wavelet filtering, to detect a circle of a particular radius. (Matlab code.) Hough transform for lines using MATLAB Archived 2014-04-13 at the Wayback Machine; Hough transform for circles in MATLAB; KHT – C++ source code.
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
In image processing, computer vision and related fields, an image moment is a certain particular weighted average of the image pixels' intensities, or a function of such moments, usually chosen to have some attractive property or interpretation. Image moments are useful to describe objects after segmentation.
The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.
To calculate the diameter of the circle of confusion in the image plane for an out-of-focus subject, one method is to first calculate the diameter of the blur circle in a virtual image in the object plane, which is simply done using similar triangles, and then multiply by the magnification of the system, which is calculated with the help of the ...
A simple elastic snake is defined by a set of n points for =, …,, the internal elastic energy term , and the external edge-based energy term .The purpose of the internal energy term is to control the deformations made to the snake, and the purpose of the external energy term is to control the fitting of the contour onto the image.
In practice, affine invariant interest points can be obtained by applying affine shape adaptation to a blob descriptor, where the shape of the smoothing kernel is iteratively warped to match the local image structure around the blob, or equivalently a local image patch is iteratively warped while the shape of the smoothing kernel remains ...