When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Plutonium - Wikipedia

    en.wikipedia.org/wiki/Plutonium

    Plutonium, like most metals, has a bright silvery appearance at first, much like nickel, but it oxidizes very quickly to a dull gray, though yellow and olive green are also reported. [5] [6] At room temperature plutonium is in its α form. [7] This allotrope is about as hard and brittle as gray cast iron.

  3. Pyrophoricity - Wikipedia

    en.wikipedia.org/wiki/Pyrophoricity

    The creation of sparks from metals is based on the pyrophoricity of small metal particles, and pyrophoric alloys are made for this purpose. [2] Practical applications include the sparking mechanisms in lighters and various toys, using ferrocerium; starting fires without matches, using a firesteel; the flintlock mechanism in firearms; and spark testing ferrous metals.

  4. Autoignition temperature - Wikipedia

    en.wikipedia.org/wiki/Autoignition_temperature

    The autoignition temperature or self-ignition temperature, often called spontaneous ignition temperature or minimum ignition temperature (or shortly ignition temperature) and formerly also known as kindling point, of a substance is the lowest temperature at which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. [1]

  5. Pit (nuclear weapon) - Wikipedia

    en.wikipedia.org/wiki/Pit_(nuclear_weapon)

    The pits of the first nuclear weapons were solid, with an urchin neutron initiator in their center. The Gadget and Fat Man used pits made of 6.2 kg of solid hot pressed plutonium-gallium alloy (at 400 °C and 200 MPa in steel dies – 750 °F and 29,000 psi) half-spheres of 9.2 cm (3.6 in) diameter, with a 2.5 cm (1 in) internal cavity for the initiator.

  6. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.

  7. Plutonium-238 - Wikipedia

    en.wikipedia.org/wiki/Plutonium-238

    Plutonium-238 (238 Pu or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years.. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage in radioisotope thermoelectric generators (RTGs) and radioisotope heater units.

  8. Thermonuclear weapon - Wikipedia

    en.wikipedia.org/wiki/Thermonuclear_weapon

    The density of the plutonium fuel rises to such an extent that the spark plug is driven into a supercritical state, and it begins a nuclear fission chain reaction. The fission products of this chain reaction heat the highly compressed (and thus super dense) thermonuclear fuel surrounding the spark plug to around 300 million kelvin, igniting ...

  9. Plutonium-239 - Wikipedia

    en.wikipedia.org/wiki/Plutonium-239

    Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years. [1]