Search results
Results From The WOW.Com Content Network
Partial oxidation (POX) is a type of chemical reaction. It occurs when a substoichiometric fuel-air mixture is partially combusted in a reformer, creating a hydrogen-rich syngas which can then be put to further use, for example in a fuel cell. A distinction is made between thermal partial oxidation (TPOX) and catalytic partial oxidation (CPOX).
These metal oxides have a high oxidizing tendency and can be used as oxygen carriers for the chemical looping combustion, gasification or partial oxidation processes. The metal oxides in Section E, the small section between the reaction lines 1 and 2, can be used for CLR and CLG, although a significant amount of H 2 O may present in the syngas ...
A methane reformer is a device based on steam reforming, autothermal reforming or partial oxidation and is a type of chemical synthesis which can produce pure hydrogen gas from methane using a catalyst. There are multiple types of reformers in development but the most common in industry are autothermal reforming (ATR) and steam methane ...
In order to obtain the mixture of CO and H 2 required for the Fischer–Tropsch process, methane (main component of natural gas) may be subjected to partial oxidation which yields a raw synthesis gas mixture of mostly carbon dioxide, carbon monoxide, hydrogen gas (and sometimes water and nitrogen). [4]
Peters four-step chemistry is a systematically reduced mechanism for methane combustion, named after Norbert Peters, who derived it in 1985. [ 1 ] [ 2 ] [ 3 ] The mechanism reads as [ 4 ]
Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is often hydrogen production , although syngas has multiple other uses such as production of ammonia or methanol .
Partial oxidation of methane to methanol (C H 3 O H), a more convenient, liquid fuel, is challenging because the reaction typically progresses all the way to carbon dioxide and water even with an insufficient supply of oxygen. The enzyme methane monooxygenase produces methanol from methane, but cannot be used for industrial-scale reactions. [19]
The oxidative coupling of methane (OCM) is a potential chemical reaction studied in the 1980s for the direct conversion of natural gas, primarily consisting of methane, into value-added chemicals. Although the reaction would have strong economics if practicable, no effective catalysts are known, and thermodynamic arguments suggest none can exist.