Search results
Results From The WOW.Com Content Network
Resolution B2 defines an absolute bolometric magnitude scale where M bol = 0 corresponds to luminosity L 0 = 3.0128 × 10 28 W, with the zero point luminosity L 0 set such that the Sun (with nominal luminosity 3.828 × 10 26 W) corresponds to absolute bolometric magnitude M bol,⊙ = 4.74.
The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...
The apparent magnitude is the observed visible brightness from Earth which depends on the distance of the object. The absolute magnitude is the apparent magnitude at a distance of 10 pc (3.1 × 10 17 m), therefore the bolometric absolute magnitude is a logarithmic measure of the bolometric luminosity.
In astronomy, a phase curve describes the brightness of a reflecting body as a function of its phase angle (the arc subtended by the observer and the Sun as measured at the body). The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun.
The apparent magnitude, the magnitude as seen by the observer (an instrument called a bolometer is used), can be measured and used with the absolute magnitude to calculate the distance d to the object in parsecs [14] as follows: = + or = (+) / where m is the apparent magnitude, and M the absolute magnitude. For this to be accurate, both ...
Because the magnitude is logarithmic, calculating surface brightness cannot be done by simple division of magnitude by area. Instead, for a source with a total or integrated magnitude m extending over a visual area of A square arcseconds, the surface brightness S is given by S = m + 2.5 ⋅ log 10 A . {\displaystyle S=m+2.5\cdot \log _{10}A.}
If the star lies on the main sequence, as determined by its luminosity class, the spectral type of the star provides a good estimate of the star's absolute magnitude. Knowing the apparent magnitude (m) and absolute magnitude (M) of the star, one can calculate the distance (d, in parsecs) of the star using m − M = 5 log ( d / 10 ...
Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1] 140 microlux: Venus at brightest [1] 200 microlux: Starlight clear moonless night sky excluding airglow [1] 10 −3: 1 millilux: 2 millilux: Starlight clear moonless night sky including airglow [1] 10 −2: 1 centilux: 1 centilux: Quarter Moon 10 − ...