Search results
Results From The WOW.Com Content Network
The position alpha to the carbonyl group (C=O) in a ketone is easily halogenated. This is due to its ability to form an enolate (C=C−O −) in basic solution, or an enol (C=C−OH) in acidic solution. An example of alpha halogenation is the mono-bromination of acetone ((CH 3) 2 C=O), carried out under either acidic or basic conditions, to ...
Remarkably, ketone halogenation also occurs in biological systems, particularly in marine algae, where dibromoacetaldehyde, bromoacetone, 1, l,l -tribromoacetone, and other related compounds have been found. The halogenation is a typical α-substitution reaction that proceeds by acid catalyzed formation of an enol intermediate. [1]: 846
The Meyer–Schuster rearrangement is the chemical reaction described as an acid-catalyzed rearrangement of secondary and tertiary propargyl alcohols to α,β-unsaturated ketones if the alkyne group is internal and α,β-unsaturated aldehydes if the alkyne group is terminal. [1]
In carbohydrate chemistry, the Lobry de Bruyn–Van Ekenstein transformation also known as the Lobry de Bruyn–Alberda van Ekenstein transformation is the base or acid catalyzed transformation of an aldose into the ketose isomer or vice versa, with a tautomeric enediol as reaction intermediate. Ketoses may be transformed into 3-ketoses, etcetera.
A common route for enamine production is via an acid-catalyzed nucleophilic reaction of ketone [7] or aldehyde [8] species containing an α-hydrogen with secondary amines. Acid catalysis is not always required, if the pK aH of the reacting amine is sufficiently high (for example, pyrrolidine, which has a pK aH of 11.26).
The accumulation of acetyl-CoA in turn produces excess ketone bodies through ketogenesis. [11] The result is a rate of ketone production higher than the rate of ketone disposal, and a decrease in blood pH. [12] In extreme cases the resulting acetone can be detected in the patient's breath as a faint, sweet odor.
The Kornblum–DeLaMare rearrangement is a rearrangement reaction in organic chemistry in which a primary or secondary organic peroxide is converted to the corresponding ketone and alcohol under acid or base catalysis. The reaction is relevant as a tool in organic synthesis and is a key step in the biosynthesis of prostaglandins. [1]
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.