Search results
Results From The WOW.Com Content Network
Macaulay's method. Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams. Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region ...
Romberg's method. In numerical analysis, Romberg's method[1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally ...
For example, there is a product measure and a non-negative measurable function f for which the double integral of |f| is zero but the two iterated integrals have different values; see the section on counterexamples below for an example of this. Tonelli's theorem and the Fubini–Tonelli theorem (stated below) can fail on non σ-finite spaces ...
These 2 latter inequalities follow from the convexity of the exponential function (or from an analysis of the function ). Letting u = x 2 {\displaystyle u=x^{2}} and making use of the basic properties of improper integrals (the convergence of the integrals is obvious), we obtain the inequalities:
This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
The definition of the Darboux integral considers upper and lower (Darboux) integrals, which exist for any bounded real -valued function on the interval The Darboux integral exists if and only if the upper and lower integrals are equal. The upper and lower integrals are in turn the infimum and supremum, respectively, of upper and lower (Darboux ...
The Riemann–Stieltjes integral appears in the original formulation of F. Riesz's theorem which represents the dual space of the Banach space C[a,b] of continuous functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of bounded variation. Later, that theorem was reformulated in terms of measures.