Search results
Results From The WOW.Com Content Network
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
The transformation P is the orthogonal projection onto the line m. In linear algebra and functional analysis , a projection is a linear transformation P {\displaystyle P} from a vector space to itself (an endomorphism ) such that P ∘ P = P {\displaystyle P\circ P=P} .
Another equivalent way to define the width of a compact curve or of a convex set is by looking at its orthogonal projection onto a line. In both cases, the projection is a line segment, whose length equals the distance between support lines that are perpendicular to the line. So, a curve or a convex set has constant width when all of its ...
Orthogonal projection onto a line, m, is a linear operator on the plane. This is an example of an endomorphism that is not an automorphism. In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism.
The projection of the point C itself is not defined. The projection parallel to a direction D, onto a plane or parallel projection: The image of a point P is the intersection of the plane with the line parallel to D passing through P. See Affine space § Projection for an accurate definition, generalized to any dimension. [citation needed]
The projection of a onto b is often written as or a ∥b. The vector component or vector resolute of a perpendicular to b, sometimes also called the vector rejection of a from b (denoted or a ⊥b), [1] is the orthogonal projection of a onto the plane (or, in general, hyperplane) that is orthogonal to b.
Associate to any line through the origin the unique plane through the origin which is perpendicular (orthogonal) to the line. When, in the model, these lines are considered to be the points and the planes the lines of the projective plane PG(2, R ) , this association becomes a correlation (actually a polarity) of the projective plane.
In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.