Ads
related to: boundary layer theory by schlichting
Search results
Results From The WOW.Com Content Network
Hermann Schlichting, Erich Truckenbrodt: Aerodynamik des Flugzeugs Springer, Berlin 1967; Hermann Schlichting, Klaus Gersten, Boundary Layer Theory, 8th ed. Springer-Verlag 2004, ISBN 81-8128-121-7; Hermann Schlichting, Klaus Gersten, Egon Krause, Herbert, jun. Oertel: Grenzschicht-Theorie Springer, Berlin 2006, ISBN 3-540-23004-1
The boundary layer around a human hand, schlieren photograph. The boundary layer is the bright-green border, most visible on the back of the hand (click for high-res image). In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by
This turbulent boundary layer thickness formula assumes 1) the flow is turbulent right from the start of the boundary layer and 2) the turbulent boundary layer behaves in a geometrically similar manner (i.e. the velocity profiles are geometrically similar along the flow in the x-direction, differing only by stretching factors in and (,) [5 ...
In fluid dynamics, a Tollmien–Schlichting wave (often abbreviated T-S wave) is a streamwise unstable wave which arises in a bounded shear flow (such as boundary layer and channel flow). It is one of the more common methods by which a laminar bounded shear flow transitions to turbulence .
A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).
Mangler transformation, also known as Mangler-Stepanov transformation (Stepanov 1947, Mangler 1948, Schlichting 1955), reduces the axisymmetric boundary layer equations to the plane boundary layer equations.
Schlichting jet is a steady, laminar, round jet, emerging into a stationary fluid of the same kind with very high Reynolds number. The problem was formulated and solved by Hermann Schlichting in 1933, [ 1 ] who also formulated the corresponding planar Bickley jet problem in the same paper. [ 2 ]