When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.

  3. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  4. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    In his 1803 publication about the quantity of gases absorbed by water, [1] William Henry described the results of his experiments: … water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.

  5. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    In 2010, a Van 't Hoff analysis was used to determine whether water preferentially forms a hydrogen bond with the C-terminus or the N-terminus of the amino acid proline. [12] The equilibrium constant for each reaction was found at a variety of temperatures, and a Van 't Hoff plot was created.

  6. Gay-Lussac's law - Wikipedia

    en.wikipedia.org/wiki/Gay-Lussac's_law

    These three gas laws in combination with Avogadro's law can be generalized by the ideal gas law. Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of ...

  7. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    b c is the colligative molality, calculated by taking dissociation into account since the boiling point elevation is a colligative property, dependent on the number of particles in solution. This is most easily done by using the van 't Hoff factor i as b c = b solute · i, where b solute is the molality of the solution. [3]

  8. Molality - Wikipedia

    en.wikipedia.org/wiki/Molality

    In chemistry, molality is a measure of the amount of solute in a solution relative to a given mass of solvent. This contrasts with the definition of molarity which is based on a given volume of solution. A commonly used unit for molality is the moles per kilogram (mol/kg). A solution of concentration 1 mol/kg is also sometimes denoted as 1 molal.

  9. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Gas stoichiometry is the quantitative relationship (ratio) between reactants and products in a chemical reaction with reactions that produce gases. Gas stoichiometry applies when the gases produced are assumed to be ideal, and the temperature, pressure, and volume of the gases are all known. The ideal gas law is used for these calculations.