Search results
Results From The WOW.Com Content Network
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
Gas undergoes a slight expansion when the temperature is raised from 15 °C (59 °F) to 60 °F and this expansion is built into the above factor for gas. The standard temperature and pressure (STP) for gas varies depending on the particular code being used. [2] It is just as important to know the standard pressure as the temperature.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min.
Nitrogen is the most common pure element in the earth, making up 78.1% of the volume of the atmosphere [9] (75.5% by mass), around 3.89 million gigatonnes (3.89 × 10 18 kg). Despite this, it is not very abundant in Earth's crust, making up somewhere around 19 parts per million of this, on par with niobium , gallium , and lithium .
For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated. Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts [ 1 ] that plot Z {\displaystyle Z} as a function of pressure at ...