Search results
Results From The WOW.Com Content Network
The field of complex numbers gives complex coordinate space C n. The a + bi form of a complex number shows that C itself is a two-dimensional real vector space with coordinates (a,b). Similarly, the quaternions and the octonions are respectively four- and eight-dimensional real vector spaces, and C n is a 2n-dimensional real vector space.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...
The set of complex numbers C, numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (c ⋅ x) + i(c ⋅ y) for real numbers x, y, a, b and c. The various ...
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
A vector may also result from the evaluation, at a particular instant, of a continuous vector-valued function (e.g., the pendulum equation). In the natural sciences, the term "vector quantity" also encompasses vector fields defined over a two-or three-dimensional region of space, such as wind velocity over Earth's surface.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k. In mathematics , the standard basis (also called natural basis or canonical basis ) of a coordinate vector space (such as R n {\displaystyle \mathbb {R} ^{n}} or C n {\displaystyle \mathbb {C} ^{n}} ) is the set of vectors, each of whose ...